Causality and graphical models in time series analysis
نویسندگان
چکیده
منابع مشابه
Graphical Modelling of Multivariate Time Series
We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...
متن کاملData Driven Methods for Granger Causality and Contemporaneous Causality with Non-Linear Corrections: Climate Teleconnection Mechanisms
We describe a unification of old and recent ideas for formulating graphical models to explain time series data, including Granger causality, semi-automated search procedures for graphical causal models, modeling of contemporaneous influences in times series, and heuristic generalized additive model corrections to linear models. We illustrate the procedures by finding a structure of exogenous va...
متن کاملGraphical Gaussian modelling of multivariate time series with latent variables
In time series analysis, inference about causeeffect relationships among multiple times series is commonly based on the concept of Granger causality, which exploits temporal structure to achieve causal ordering of dependent variables. One major problem in the application of Granger causality for the identification of causal relationships is the possible presence of latent variables that affect ...
متن کاملCausal Nexus between Inflation and Economic Growth of Japan
This study aims to evaluate the link between economic growth and consumer price index (CPI) in Japan for the period of 1980-2014. Initial series were adjusted for stationarity using the Augmented Dickey- Fuller (ADF) test for unit root followed by the application of Johansen Co-integration Test in order to examine the long-run relationship among the variables, while the causalities were evaluat...
متن کاملGranger Causality Analysis in Irregular Time Series
Learning temporal causal structures between time series is one of the key tools for analyzing time series data. In many real-world applications, we are confronted with Irregular Time Series, whose observations are not sampled at equally-spaced time stamps. The irregularity in sampling intervals violates the basic assumptions behind many models for structure learning. In this paper, we propose a...
متن کامل